Synthesis of Novel Fused β-Lactams by Intramolecular 1,3-Dipolar Cycloadditions. Part 10. ${ }^{1}$ The 9-Oxo-6-thia-1,3-diazabicyclo[5.2.0]nonene, 8-Oxo-5-thia-1,3-diazabicyclo[4.2.0]octene, and 8-Oxo-5-oxa-1,3diazabicyclo[4.2.0]octene Ring Systems

Clive L. Branch and Michael J. Pearson ${ }^{\bullet}$
Beecham Pharmaceuticals Research Division, Brockham Park, Betchworth, Surrey, RH3 7AJ

Abstract

4-Acetoxyazetidin-2-one (6) has been converted into (E) - and (Z)-1-[azido(t-butoxycarbonyl)methyl]-[2-(ethoxycarbonyl) vinylthio]azetidin-2-one (10) and (13). Thermolysis of either geometrical isomer in retluxing xylene afforded t-butyl (2RS,6RS)-4-ethoxycarbonylmethyl-8-oxo-5-thia-1,3-diaza-bicyclo[4.2.0]oct-3-ene-2-carboxylate (17) and both C-2 epimers of 5-ethoxycarbonyl-9-oxo-6-thia-1,3-diazabicyclo[5.2.0]non-4-ene-2-carboxylate (14) and (15).

The penicillin-derived ($3 S, 4 S$)-4-acetoxy-3-phenoxyacetamidoazetidin-2-one (22) has been used to prepare (1RS,3S,4R)-1-[azido(benzyloxycarbonyl)methyl]-4-prop-1-enyloxy-3-phenoxyacetamido-azetidin-2-one (27), which when heated in refluxing toluene gave benzyl ($2 S, 6 R, 7 S$)-4-ethyl-8-oxo-7-phenoxy-acetamido-5-oxa-1,3-diazabicyclo[4.2.0]oct-3-ene-2-carboxylate (29). The corresponding free acid (30) was antibacterially inactive.

The synthesis of the 1,3-diazabicyclo [4.2.0] octene ring system, via intramolecular cycloaddition of a suitably functionalised olefinic azide, has recently been reported. ${ }^{1,2}$ The 4-allyl derivative (1) gave the imine (3), whereas the α, β-unsaturated ester (2) afforded the enamine (4). We now report further novel products derived from thermolysis of azides substituted at C-4 of the azetidinone ring by mercaptoacrylate or vinyl ether moieties.

The sodium salt (5) of ethyl β-mercaptoacrylate, prepared by treatment of ethyl propiolate with sodium hydrosulphide, was treated with 4 -acetoxyazetidin-2-one (6) ${ }^{3}$ using the procedure described by Woodward ${ }^{4}$ for the synthesis of the cis-methyl ester (7). The separable crystalline products (8) and (11) were individually condensed with an excess of t-butyl glyoxylate in refluxing benzene, to provide the respective hydroxy amides (9) and (12), each being a mixture of diastereoisomers. Successive treatment of (9) or (12) with thionyl chloride and sodium azide gave the corresponding azides (10) or (13) (ratio of diastereoisomers ca. 1:1 in each case).

Although the α, β-unsaturated ester (2) was cyclised by a 5.5 h period under reflux in toluene, ${ }^{1,2}$ it was considered that replacement of carbon by sulphur would deactivate the double bond, and would therefore necessitate more forcing conditions for the cycloaddition. Indeed when either (10) or (13) was refluxed in toluene for 5 h very little change was observed. Xylene proved more effective. Thus, the azide (10) or (13) was heated under reflux in dry degassed xylene under argon for 2 h . Purification of the crude product on Florisil gave starting material and three new substances. The two most polar compounds isolated (total yield ca. 7\%), were both crystalline, and on the basis of their spectroscopic properties they were considered to be diastereoisomeric. The highly resolution enhanced $250 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectrum of the major (5%) diastereoisomer clearly indicated that the material was the fused seven-membered ring system (14) and not the expected 3 -azacepham (16). The olefinic proton appeared at $\delta 7.75$ and showed significant coupling ($J 7.3 \mathrm{~Hz}$) to the enamine NH. In the sixmembered enamine system (4), the olefinic proton displayed only fine coupling ($J 1.7 \mathrm{~Hz}$) to the NH and was characteristically high field at δ 4.7. ${ }^{1}$ In each diastereoisomer (14) or (15), 2-H was coupled to the enamine $\mathrm{NH}(J 6.2$ and 4.2 Hz

(2) $X=\mathrm{CO}_{2} \mathrm{Me}$

(7)

(11) $R=H$
(12) $\mathrm{R}=\mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}$
(13) $\mathrm{R}=\mathrm{CH}\left(\mathrm{N}_{3}\right) \mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}$

(8) $R=H$
(9) $\mathrm{R}=\mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}$
(10) $\mathrm{R}=\mathrm{CH}\left(\mathrm{N}_{3}\right) \mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}$

(14) $R^{1}=H, R^{2}=\mathrm{CO}_{2} \mathrm{Bu}^{t}$
(15) $\mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{l}}, \mathrm{R}^{2}=\mathrm{H}$

(16)

(17) $R^{\prime}=H, R^{2}=\mathrm{CO}_{2} B u^{t}$

(19)

(29) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$
(30) $R=H$
dioxane, the propenyl ether (25) was isolated as a mixture of inseparable (Z) and (E)-isomers in 77% yield (ratio $2: 1$). Condensation of the azetidinone (25) with benzyl glyoxylate afforded the alcohol (26) which was treated in the usual way to give the azide (27) as a $1: 1$ mixture of diastereoisomers. When the azide (27) was refluxed in toluene for 12 h , benzyl ($2 R$, $6 R, 7 S$)-4-ethyl-8-oxo-7-phenoxyacetamido-5-oxa-1,3-diazabi-cyclo[4.2.0]oct-3-ene-2-carboxylate (29) was the only new product isolated.

Initial attempts at quantitatively separating (29) from starting material (27) by silica gel chromatography were unrewarding. However, treatment of the crude reaction mixture with triphenylphosphine converted the azide (27) into the more polar phosphinimine (28), and allowed the isolation of the pure product (29). The structure and stereochemistry of (29) were assigned using the established criteria.

Hydrogenation of (29) over $10 \% \mathrm{Pd} / \mathrm{C}$ removed the benzyl ester to provide the free acid (30) as an amorphous solid, which was devoid of antibacterial activity. The conversion of benzyl ester (29) into the 1 -oxa-3-azadethiacephalosporin ring system was not investigated since no stability advantage over the thia analogues prepared by Aratani was envisaged.

Experimental

General procedures were as in Part 1^{12} and all compounds are racemic, except where indicated otherwise. 250 MHz Spectra were recorded on a Bruker WM250 instrument.
(E)- and (Z)-Sodium 2-Ethoxycarbonylethylenethiolate (5).Sodium hydroxide (8.0 g) was dissolved in water (20 ml) and ethanol (400 ml) was added. The solution was cooled to $0^{\circ} \mathrm{C}$ and hydrogen sulphide passed through it until it was saturated (pH of solution virtually neutral). The solution was purged with argon to remove excess of hydrogen sulphide when ethyl propiolate (19.6 g) was added in one portion. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , filtered, and the solid washed with ethanol and discarded. The filtrate was evaporated to dryness under reduced pressure, toluene (200 ml) was added, and the solvent evaporated. This was repeated twice more and the residue triturated with dry ether to give the sodium salt (5) as a pale yellow solid (22.2 g), which was used immediately.
(E)- and (Z)-4-(2-Ethoxycarbonylvinylthio)azetidin-2-one (8) and (11).-(We thank Dr. E. G. Brain for this preparation.) 4-Acetoxyazetidin-2-one (6) (18.4 g) was dissolved in acetone (200 ml) and the solution cooled to $0^{\circ} \mathrm{C}$. The sodium salt (5) (22 g) in water (50 ml) was added dropwise during 5 min , and then the cooling-bath was removed. After a further 30 min the acetone was evaporated off and the residue extracted with ethyl acetate ($2 \times 300 \mathrm{ml}$). The combined organic extracts were washed with brine, dried, and evaporated. Chromatography gave the (E)isomer (8) as a gum (6.18 g) which slowly crystallised at $0^{\circ} \mathrm{C}$, m.p. $51-52^{\circ} \mathrm{C}$ (ethyl acetate-hexane) (Found: C, 48.2; H, 5.7; $\mathrm{N}, 7.1 ; \mathrm{S}, 15.8 . \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 47.8 ; \mathrm{H}, 5.5 ; \mathrm{N}, 7.0 ; \mathrm{S}$, 15.9%); $v_{\text {max. }} 3400,3300 \mathrm{br}, 3000,1780 \mathrm{br}$, and $1590 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ $(60 \mathrm{MHz}) 1.3(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 2.84$ and $3.1(1 \mathrm{H}$, part of ABq, $J 16$ Hz , each arm showing further coupling of $J c a .1 \mathrm{~Hz}$ and $2 \mathrm{~Hz}, J$ ca. 1 Hz lost on $\mathrm{D}_{2} \mathrm{O}$ exch), 3.41 and $3.68(1 \mathrm{H}$, part of $\mathrm{ABq}, J 16$ Hz , each arm showing further coupling of $J 2$ and $5 \mathrm{~Hz}, J 2 \mathrm{~Hz}$ lost on $\mathrm{D}_{2} \mathrm{O}$ exch.), $4.17(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{dd}, J 2$ and 5 $\mathrm{Hz}), 5.85(1 \mathrm{H}, \mathrm{d}, J 16 \mathrm{~Hz}), 7.0\left(1 \mathrm{H}, \mathrm{br}\right.$ s, exch. $\left.\mathrm{D}_{2} \mathrm{O}\right)$, and $7.68(1$ $\mathrm{H}, \mathrm{d}, J 16 \mathrm{~Hz}$).

Further elution provided the (Z)-isomer (11) as a crystalline solid (6.24 g), m.p. $91^{\circ} \mathrm{C}$ (ethyl acetate-hexane) (Found: C, 48.05; H, 5.4; N, 7.0\%); $v_{\text {max. }} 3400,3$ 300br, $3000,1780,1770$, 1690 , and $1570 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.3(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 2.85$ and $3.11(1 \mathrm{H}$, part of $\mathrm{ABq}, J 16 \mathrm{~Hz}$, each arm showing further coupling of $J c a .1$ and $2 \mathrm{~Hz}, J c a .1 \mathrm{~Hz}$ lost on $\mathrm{D}_{2} \mathrm{O}$ exch.), 3.37 and $3.64(1 \mathrm{H}$, part of $\mathrm{ABq}, J 16 \mathrm{~Hz}$, each arm showing further coupling of $J 2$ and $5 \mathrm{~Hz}, J 2 \mathrm{~Hz}$ lost on $\mathrm{D}_{2} \mathrm{O}$ exch.), $4.20(2 \mathrm{H}, \mathrm{q}$, $J 7 \mathrm{~Hz}), 4.93(1 \mathrm{H}, \mathrm{dd}, J 2$ and 5 Hz$), 6.0(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}), 6.82(1$ H , br s, exch. $\left.\mathrm{D}_{2} \mathrm{O}\right)$, and $7.27(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz})$.
(E)- and (Z)-4-(2-Ethoxycarbonylvinylthio)-1-[hydroxy (t-butoxycarbonyl)methyl]azetidin-2-one (9) and (12).-t-Butyl glyoxylate monohydrate (3 g) was refluxed in benzene (15 ml)
for 0.5 h with provision for the removal of water. The azetidinone (8) (250 mg) was added and the mixture refluxed for $1 \frac{1}{2} \mathrm{~h}$. The solvent was evaporated and the residue chromatographed to give the alcohol (9) as a thick oil (521 mg) (Found: M^{+}, 331.1083. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{~S}$ requires $M, 331.1090$); $v_{\text {max. }} 3510 \mathrm{br}, 1780,1735,1710$, and $1595 \mathrm{~cm}^{-1}$. The n.m.r. spectrum (90 MHz) showed singlets (after $\mathrm{D}_{2} \mathrm{O}$ exch.) at $\delta 5.0$ and 5.42 for the CHOH protons of the two isomers (ratio ca. 1:1).

In the same way the azetidinone (11) (3.03 g) was converted into the alcohol (12), which was isolated as a viscous gum (4.6 g), $v_{\text {max. }} 3510 \mathrm{br}, 1775,1735,1710$, and $1590 \mathrm{~cm}^{-1}$. The n.m.r. spectrum (90 MHz) showed singlets (after $\mathrm{D}_{2} \mathrm{O}$ exch.) at $\delta 4.95$ and 5.37 for the CHOH protons of the two isomers (ratio $c a$. 1:1) [Found: $M \mathrm{NH}_{4}{ }^{+}, m / z$ (c.i.) 349. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{~S}$ requires M, 331].
(E)- and (Z)-1-[Azido(t-butoxycarbonyl)methyl]-4-(2-ethoxycarbonylvinylthio) azetidin-2-one (10) and (13).-The alcohol (9) $(662 \mathrm{mg})$ was dissolved in dry tetrahydrofuran (20 ml) at $-15^{\circ} \mathrm{C}$ and 2,6 -lutidine (267 mg) was added, followed dropwise by thionyl chloride (297 mg) in tetrahydrofuran (2 ml) over 15 min . The mixture was filtered and the filtrate evaporated; the residue was dissolved in toluene and the solution evaporated. The crude product was dissolved in dry N, N-dimethylformamide (15 ml) and powdered sodium azide (145 mg) added. The mixture was vigorously stirred for 10 min and then poured into ethyl acetate. The solution was washed with dilute hydrochloric acid and brine, dried, and evaporated. Chromatography gave the azide (10) as a mixture of isomers (600 mg), $v_{\text {max. }} 2125$, $1780,1745,1695$, and $1580 \mathrm{~cm}^{-1}$. The n.m.r. spectrum (90 MHz) showed singlets at $\delta 5.28$ and 5.32 for the CHN_{3} protons of the two isomers (ratio ca. 1:1) [Found: $M \mathrm{NH}_{4}{ }^{+}, m / z$ (c.i.) 374. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ requires $M, 356$].

In the same way the azetidinone (12) (1.9 g) was converted into the azide (13), which was isolated as a viscous gum (1.36 g), $v_{\text {max. }} 2125,1775,1745,1695$, and $1580 \mathrm{~cm}^{-1}$. The n.m.r. spectrum (90 MHz) showed singlets at $\delta 5.29$ and 5.38 for the CHN_{3} protons of the two isomers (ratio ca. 1:1) [Found: $\mathrm{MNH}_{4}{ }^{+} m / z$ (c.i.) 374].
(2RS,6SR)-t-Butyl-4-ethoxycarbonylmethyl-8-oxo-5-thia-1,3-diazabicyclo[4.2.0]oct-3-ene-2-carboxylate (17), and (2RS,6RS)(14) and (2RS,6SR)-t-Butyl-5-ethoxycarbonyl-9-oxo-6-thia-1,3-diazabicyclo[5.2.0]non-4-ene-2-carboxylate (15).-The azide (10) $(1.5 \mathrm{~g})$ was refluxed under argon in dry degassed xylene (500 $\mathrm{ml})$ for 2 h . The solvent was evaporated off and the residue chromatographed on Florisil (30 g). The least polar fractions which contained some starting material were rechromatographed on silica (20 g) to give the azide (10) (350 mg) enriched in one epimer (ratio $\mathrm{CHN}_{3} \delta 5.32$ and $5.28,6: 1$), and the imine (17) which was isolated as a viscous oil (245 mg) (Found: $M+$ $\mathrm{H}^{+}, m / z$ 329.1177. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $M+\mathrm{H}, m / z$ 329.1171); $v_{\text {max. }} 1780,1740$, and $1625 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.23$ $(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 1.47(9 \mathrm{H}, \mathrm{s}), 3.03$ and $3.66(2 \mathrm{H}, \mathrm{ABq}, J 15 \mathrm{~Hz}$, each arm showing further coupling of 1.5 and 4.2 Hz respectively), 3.39 (2 H , slightly broadened singlet, J ca. 0.7 Hz), $4.15(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and 4.2 Hz), and 5.89 (1 H , slightly broadened singlet, $J c a .0 .7 \mathrm{~Hz}$).

Further elution of the Florisil column afforded the (2RS,6SR)-isomer (15) as a crystalline solid (22 mg), m.p. 186 $187^{\circ} \mathrm{C}$ (decomp.) (ethyl acetate-light petroleum) (Found: M^{+}, 328.1096. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $M, 328.1092$); $\lambda_{\text {max. }}(2 \%$ $\left.\mathrm{CHCl}_{3}-\mathrm{EtOH}\right) 304 \mathrm{~nm}\left(\varepsilon 7453 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$); $\nu_{\text {max. }} 3380$, $1775,1740,1690$, and $1600 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$, highly resolution enhanced) $1.27(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}), 1.51(9 \mathrm{H}, \mathrm{s}), 3.48$ and $3.56(2 \mathrm{H}, \mathrm{ABq}, J 16 \mathrm{~Hz}$, each arm showing further coupling of 4.2 and 2.55 Hz respectively), $4.17(2 \mathrm{H}, \mathrm{m}), 4.96(1 \mathrm{H}, \mathrm{dd}, J$
2.55 and 4.2 Hz$), 5.84(1 \mathrm{H}$, dd, $J 0.7$ and 3.5 Hz$), 6.10(1 \mathrm{H}, \mathrm{m}$, exch. $\mathrm{D}_{2} \mathrm{O}$), and $7.76(1 \mathrm{H}$, dd, $J 0.7$ and 7.8 Hz).
The most polar fractions gave the (2RS,6RS)-isomer (14) as a crystalline solid (60 mg), m.p. $185-189{ }^{\circ} \mathrm{C}$ (decomp.) (ethyl acetate-light petroleum) (Found: C, 51.2; H, 6.15; N, 8.4; S, 9.3. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 51.2 ; \mathrm{H}, 6.10 ; \mathrm{N}, 8.5 ; \mathrm{S}, 9.8 \%$); $\lambda_{\text {max }}$ ($2 \% \mathrm{CHCl}_{3}-\mathrm{EtOH}$) 243 ($\varepsilon 6420 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$) and 303 nm (7600); $v_{\text {max. }} 3440,1770,1760 \mathrm{sh}, 1690$, and $1610 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (250 MHz , highly resolution enhanced) $1.27(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}$), $1.57(9 \mathrm{H}, \mathrm{s}), 3.41(2 \mathrm{H}, \mathrm{m}), 4.18(2 \mathrm{H}, \mathrm{m}), 4.98(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and $3.8 \mathrm{~Hz}), 5.23(1 \mathrm{H}, \mathrm{d}, J 6.2 \mathrm{~Hz}), 5.57(1 \mathrm{H}, \mathrm{dd}, J 6.2$ and 7.3 Hz , exch. $\mathrm{D}_{2} \mathrm{O}$), and $7.75(1 \mathrm{H}, \mathrm{d}, J 7.3 \mathrm{~Hz}$).

Essentially the same yields of products were obtained on thermolysis of the azide (13) under identical conditions.
(3S,4S)-(23) and (3S,4R)-3-Phenoxyacetamido-4-prop-2-enyl-oxyazetidin-2-one (24).-The trans-acetate (22) (8.34 g), prop-2enol (5.22 g), and powdered zinc acetate dihydrate (3.3 g) were stirred at $80^{\circ} \mathrm{C}$ in toluene for 3 h . The mixture was filtered and the filtrate evaporated. Chromatography of the residue gave the trans-isomer (23) (1.4 g), m.p. $121-122{ }^{\circ} \mathrm{C}$ (ethyl acetate-light petroleum) (Found: C, 61.1; H, 5.6; N, 10.1. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 60.9 ; \mathrm{H}, 5.8 ; \mathrm{N}, 10.1 \%$); $v_{\text {max. }} 3350,1780$, and 1685 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 4.11(2 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}), 4.47(2 \mathrm{H}, \mathrm{s}), 4.72(1 \mathrm{H}$, dd, $J c a .1$ and 8 Hz), $5.11(1 \mathrm{H}, \mathrm{d}, J c a .1 \mathrm{~Hz}), 5.22-6.3(3 \mathrm{H}, \mathrm{m})$, and $6.72-7.62(7 \mathrm{H}, \mathrm{m})$.

Further elution gave the cis-isomer (24) (1.39 g), m.p. 128 $129^{\circ} \mathrm{C}$ (ethyl acetate-light petroleum) (Found: C, 60.5; H, 6.0; $\mathrm{N}, 10.2 \%$); $v_{\text {max. }} 3350,1785$, and $1695 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 4.04$ $(2 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}), 4.54(2 \mathrm{H}, \mathrm{s}), 5.05-6.2(5 \mathrm{H}, \mathrm{m})$, and $6.76-7.54$ ($7 \mathrm{H}, \mathrm{m}$).
(3S,4R)-3-Phenoxyacetamido-4-prop-1-enyloxyazetidin-2-one (25).-The azetidinone (24) (345 mg) was dissolved in dry dioxane $(10 \mathrm{ml})$ and $10 \% \mathrm{Pd}-\mathrm{C}(89 \mathrm{mg})$ added. The mixture was refluxed under argon with vigorous stirring. After 4 h , the cooled mixture was filtered through Kieselguhr and the filtrate evaporated. Chromatography afforded the ether (25) as a white crystalline solid (167 mg) (Found: C, 60.9; H, 5.8; N, 10.1. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 60.9; $\mathrm{H}, 5.8 ; \mathrm{N}, 10.1 \%$); $v_{\text {max. }} 3420$, 1795 , and $1690 \mathrm{~cm}^{-1}$. The n.m.r. spectrum was extremely complex but clearly showed the product was a mixture of (Z) and (E)-isomers (ratio 2:1), $\delta_{\mathrm{H}}(250 \mathrm{MHz})\left[\mathrm{CDCl}_{3}+2\right.$ drops $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$] inter alia 1.53 and 1.58 (together 3 H , dd, $J 1.8$ and $10.8 \mathrm{~Hz}, 1.5$ and 10.8 Hz , respectively), 5.49 (1 H , ddd, J ca. 1, 4, and 9.5 Hz), 6.05 and 6.13 (together $1 \mathrm{H}, \mathrm{dq}, J 1.5$ and $6 \mathrm{~Hz}, 1.8$ and 13 Hz respectively), and 8.55 and 8.59 (together 1 H , slightly broadened s).
(3S,4R)-1-[Hydroxy(benzyloxycarbony)methyl]-3-phenoxy-acetamido-4-prop-1-enyloxyazetidin-2-one (26).-Benzyl glyoxylate monohydrate (189 mg) was refluxed in benzene (20 ml) for 1 h with provision for the removal of water. The azetidinone (25) (247 mg) in dioxane (3 ml) was added and the solution refluxed for a further 1 h and then cooled. Triethylamine (9 mg) was added and after 30 min the solvents were evaporated off. Chromatography gave a viscous gum (26) (358 mg), $v_{\text {max. }} 3500$, $3420,1790,1750$, and $1690 \mathrm{~cm}^{-1}$.
(3S,4R)-1-[Azido(benzyloxycarbonyl)methyl]-3-phenoxyacet-amido-4-prop-1-enyloxyazetidin-2-one (27).-The hydroxy ester (26) (352 mg) was converted into the azide (27) as described for
(9). The product (27) was a viscous gum (292 mg), $v_{\text {max. }} 3415$, $2120,1790,1755,1690$, and $1675 \mathrm{~cm}^{-1}$.
(2S,6R,7S)-Benzyl-4-Ethyl-8-oxo-7-phenoxyacetamido-5-oxa-1,3-diazabicyclo-[4.2.0]oct-3-ene-2-carboxylate (29).-The azide (27) (207 mg) was refluxed in dry toluene (200 ml) under argon for 12 h . The solvent was evaporated off and the residue chromatographed to give an inseparable mixture of starting material (27) and the product (29). The material (95 mg) was dissolved in dichloromethane and triphenylphosphine (10 mg) added. After 30 min the solvent was evaporated off and chromatography afforded the pure product (29) as an amorphous solid (64 mg) (Found: $M^{+}, 437.1586 . \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires $M, 437.1587$); $[\alpha]_{D}{ }^{20}+105.5\left(c 2.24\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \lambda_{\text {max }}$ $262\left(\varepsilon 1150 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right), 268(1430)$, and $275 \mathrm{~nm}(1080)$; $(250 \mathrm{MHz}) 1.09(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}), 2.22(2 \mathrm{H}, \mathrm{q}, J 7.5 \mathrm{~Hz}), 4.56(2$ $\mathrm{H}, \mathrm{s}), 5.20$ and $5.25(2 \mathrm{H}, \mathrm{ABq}, J 12 \mathrm{~Hz}), 5.48(1 \mathrm{H}$, slightly broadened s), $5.54(1 \mathrm{H}, \mathrm{d}, J c a .3 \mathrm{~Hz}), 5.66(1 \mathrm{H}, \mathrm{dd}, J c a .3$ and 9 $\mathrm{Hz}), 6.9-7.1(3 \mathrm{H}, \mathrm{m})$, and $7.25-7.4(8 \mathrm{H}, \mathrm{m})$.
(2S,6R,7S)-4-Ethyl-8-oxo-7-phenoxyacetamido-5-oxa-1,3-diazabi-cyclo[4.2.0]oct-3-ene-2-carboxylic Acid (30).-The ester (29) (25 mg) was hydrogenated over $10 \% \mathrm{Pd}-\mathrm{C}(11 \mathrm{mg})$ in dioxane (7 ml) for 2 h . The catalyst was removed by filtration through Kieselguhr and the filtrate evaporated. Trituration of the residue with ether afforded the acid (30) as a white amorphous solid (15 mg), $\lambda_{\text {max. }} 268\left(\varepsilon 3183 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$) and 275 nm (3342); $v_{\text {max. }}$ (KBr) $3400,1785,1745$, and 1660 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(250 \mathrm{MHz})\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 0.98(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}), 2.25(2$ $\mathrm{H}, \mathrm{q}, J 7.5 \mathrm{~Hz}), 4.56(2 \mathrm{H}, \mathrm{s}), 4.76(1 \mathrm{H}, \mathrm{s}), 5.24(1 \mathrm{H}, \mathrm{dd}, J 4$ and 9 $\mathrm{Hz}), 6.12(1 \mathrm{H}, \mathrm{d}, J 4 \mathrm{~Hz}), 6.85-7.05(3 \mathrm{H}, \mathrm{m}), 7.2-7.4(2 \mathrm{H}, \mathrm{m})$, and $8.79(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz})$.

Acknowledgements

We thank Dr. J. H. C. Nayler for his interest in this work, and Dr. J. Gower, Mr. J. W. Tyler, and Mr. A. Cutmore for the spectral data.

References

1 Part 9, C. L. Branch and M. J. Pearson, J. Chem.. Soc., Perkin Trans. 1 , preceding paper.
2 C. L. Branch and M. J. Pearson, J. Chem. Soc., Chem. Commun., 1981, 946.
3 K. Clauss, D. Grimm, and G. Prossel, Justus Liebigs Ann. Chem., 1974, 539.
4 H. R. Pfaendler, J. Gosteli, and R. B. Woodward, J. Am. Chem. Soc., 1979, 101, 6306.
5 M. D. Bachi, F. Frolow, and C. Hoornaert, J. Org. Chem., 1983, 48, 1841.

6 R. G. Alexander and R. Southgate, J. Chem. Soc., Chem. Commun., 1977, 405.
7 M. Aratani and M. Hashimoto, J. Am. Chem. Soc., 1980, 102, 6171.
8 A. Padwa, Angew. Chem., Int. Ed. Engl., 1976, 15, 123, and references cited therein.
9 C. L. Branch and M. J. Pearson, J. Chem. Soc., Perkin Trans. 1, 1979, 2268.

10 H. A. J. Carless and D. J. Heywood, J. Chem. Soc., Chem. Commun., 1980, 980.
11 R. Boss and R. Scheffold, Angew. Chem.. Int. Ed. Engl., 1976, 15, 558.
12 D. Davies and M. J. Pearson, J. Chem. Soc., Perkin Trans. 1, 1981, 2539.

